
Sample size calculations: should the emperor’s clothes
be off the peg or made to measure?
Ethics committees require estimates of sample size for all trials, but statistical calculations are no
more accurate than estimates from historical data. Geoffrey Norman and colleagues propose
some “one size fits all” numbers for different study designs
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Conventional wisdom dictates that it is unethical to conduct a
study that is so large that excess numbers of patients are exposed
or so small that clinically important changes cannot be detected.1
This implies that there is some optimal sample size that can be
calculated using statistical theory and information from previous
research. But the choice of sample size is usually a compromise
between statistical considerations, which always benefit from
increased sample size, and economic or logistical constraints.2

Only rarely is sufficient information available to make informed
decisions. Moreover, despite the illusion of precision that arises
from the application of arcane statistical formulas, in many
situations the choice of inputs—the expected treatment effect,
the standard deviation, and the power—are subject to
considerable uncertainty. As a result, sample size calculations
may vary widely.
We argue that, in the absence of good data, it would be better
to determine sample size by adopting norms derived from
historical data based on large numbers of studies of the same
type. We show that for many common situations we can define
defensible, evidence based, ranges of sample sizes.

An example
Imagine that you decide to do a study to see if control of primary
hypertension is improved by home monitoring. You visit your
local statistician for a sample size calculation, as the ethics board
insists. The following are some key questions that he or she will
ask and some tentative answers.

What is the distribution of blood pressure in
the population you intend to study?
One study design might be to randomise people to treatment
and control groups, put one group onmonitors for a fewmonths,
then measure their blood pressure. We would then compare
blood pressure in the two groups. To compute sample size, we

need to know the standard deviation of systolic (or diastolic)
blood pressure in the group we are studying. One recent
meta-analysis of interventions to control hypertension gave
values of 15-17 mm Hg.3

How much do you think your treatment will
affect systolic blood pressure?
The most reasonable answer is, “How do I know? That’s why
I’m doing the study.” Regrettably, you have to know to calculate
sample size. Fortunately, a recent Cochrane review of 12
randomised trials with over 1200 patients per group provides a
guide.3 The mean difference in systolic pressure was 2.53 mm
Hg. Individual study results ranged from a drop of 26.0 mmHg
to a gain of 5.0 mm Hg. If we eliminate the two studies with
very small samples of 9 and 18 and use the three largest
observed differences, we end up with a mean drop of 6.9 mm
Hg from studies with samples of 48, 55, and 76. Conversely,
the studies with the three smallest treatment effects (n=123,
326, and 72) showed an average benefit of 1 mm Hg.

What α and β levels do you want?
That’s easy. Convention dictates that α (level of statistical
significance) is 0.05 and β (the probability of a type II error:
rejecting the null hypothesis when the alternate hypothesis is
true) is 0.20. (However easy and universal these may be, the
choice of a power of 0.80 is logically unsupportable, as shown
by Bacchetti.2 But for the sake of convention, we will proceed.)
We can now do the calculation (box). If we take the extremes,
the smallest sample size, based on a reduction of 6.9 mm Hg
and an SD of 15, equals 75 per group. The largest, for a 1 mm
Hg drop and an SD of 17, equals 4624. The overall average
drop of 2.53 corresponds to a sample size of 722. These
estimates differ by a factor of 60 even though this was a “best
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case” situation, in which all studies had reasonable sample size
and were viewed as sufficiently homogeneous to be included
in a systematic review.
Critics might argue that the choice of the three smallest and
largest differences was arbitrary and extreme, but we used it to
illustrate the point. We could have used alternative strategies,
such as weighting by sample size. But the fact is that all the
studies were derived from a Cochrane systematic review, all
were examining a single question, all were deemed of sufficient
quality to be included in the systematic review, and all were
used in the final calculation in the review. On that basis, all are
equal candidates for inclusion in a sample size calculation.
In more representative situations where data are lacking, there
would be even more “wiggle room.” Virtually all statisticians
who have been engaged in this activity describe multiple
iterations until the computed sample size converges to a desired
result.

Other approaches to sample size
Interestingly, inclusion of sample size as an element of research
ethics is far more pervasive in health sciences than in other areas
such as social sciences. In Canada, the authoritative Tricouncil
statement on ethics—produced by the three federal research
councils for health, social sciences, and physical
science—mentions sample size only in the section on qualitative
research. In non-medical disciplines it seems that judgments
about adequacy of sample size, if raised at all, are resolved by
arguments along the lines of “studies in this area typically use
sample sizes about this large.” Perhaps this is because
biomedical research is more likely to expose participants to real,
occasionally life threatening, risks.
Clinical trials also typically include large numbers of people,
and the cost per person is high. All these factors increase
pressure to arrive at the “right” sample size. However, as
Bacchetti argues, any sample size is a compromise and high
risks and costs really should be seen as factors to reduce sample
size.2

Calculation of sample size seems unlikely to disappear, whatever
the philosophical flaws in the argument. But in view of the
imprecision of the estimates, we need a fundamental rethink of
the approach to avoid the calculation being seen (with
justification) as simply another hoop to jump through to obtain
ethical approval.
We propose a new approach that establishes norms for particular
study questions and designs, while not preventing the
investigator from producing an individual estimate when the
evidence warrants it. The idea stems from a proposal by
Bacchetti2 and from the commonsense idea to use existing data
when available to increase precision of estimates.
As we have seen, individual estimates, even when based on
previous studies, can vary wildly. Still, it is a large leap of faith
to presume that “cultural” norms based on previous research
are more defensible. However, in some areas there is good
evidence of the magnitude of treatment effects that might be
expected. For studies of two groups in which the outcome is
either a measured (interval or ratio) dependent variable or a
difference in proportions, we argue that there is sufficient
evidence from various sources to compute norms for sample
sizes that may apply to all such studies. For some regression
methods, there are “rules of thumb” that do not require specific
information.

Sample size norms for different designs
Differences between groups
Measured outcome variable
The most basic study design on which to base a sample size
calculation resembles our introductory example. Participants
are assigned to two groups: one group receives a treatment and
the other a placebo, the outcome is measured on a continuous
scale (such as blood pressure, range of motion, creatinine
concentration), and the means of the two groups are compared.
The classic text for sample size and power calculations is
Cohen’s Statistical Power Analysis for the Behavioral Sciences.5
The basis for the sample size calculation is the effect size—the
treatment difference divided by the standard deviation within
groups. Based on his experience, Cohen proposed that a small
effect size is 0.2, a medium is 0.5, and a large is 0.8. On this
basis, the norm for sample sizes would be 400, 64, and 25
respectively.
Although equating of 0.2, 0.5, and 0.8 with small, medium, and
large effect sizes has now become almost axiomatic, Cohen did
not view them that way.2 He spends considerable time arguing
the reasonableness of these estimates by comparing them with
other indices such as overlap of distributions, correlations, and
percent of variance, as well as anchoring to commonly accepted
scales like intelligence quotient (IQ). Halpern went further and
argued that, in the absence of any more specific data, sample
size could be based on a medium effect size (0.5), so the default
would be n=64.6

We are not suggesting that sample size estimates should be
based on small, medium, or large effect sizes. Rather we should
use norms within research communities—explicitly using
archival data to identify representative and expected normative
values of effect size. As one example, Lipsey and Wilson
examined 302 meta-analyses of 13 000 studies looking at
educational and psychological interventions.7 They found a
mean effect across all studies of 0.50, with a standard deviation
of 0.29. This large series is quite consistent with Cohen’s
original estimates and results in a sample size between 26 and
363, again with a best estimate of 64.
Another approach to sample size calculation involves
consideration of the minimally important difference (MID).
There are several approaches to determining the MID, most
commonly by observing change in a cohort of patients who are
judged to have had minimal change in their quality of life. One
study looked at 38 studies estimating the MID in health related
quality of life.8 The mean MID over 62 estimates was 0.495,
with an SD of 0.15. From this survey, the range of sample sizes
(±1SD) would be 38 to 134, with a best estimate of 65.
Both these examples estimate that a study with two groups and
a continuous outcome might use a sample size of about 60 per
group, although anything within the range 25 to 400 is
acceptable, with larger samples for treatment-treatment
comparisons and smaller samples for comparison with no
treatment. They also happen to be consistent with Cohen’s
medium effect size, although this cannot be seen as justification
to adopt 0.5 as a standard since many clinical interventions have
much smaller effect sizes.7

Binary outcome variable— proportions
Many clinical trials use a binary (death/no death, event/no event)
outcome. The sample size formula differs and is dependent on
both the base rate of the outcome and the risk reduction. If we
can establish a normative range of relative risk reduction to be
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Calculating sample size

For a difference between two groups, sample size=16×s2/d2

where s is the standard deviation and d is the expected treatment effect.
As Lehr has shown,4 for α=0.05 and power of 0.80 this is a close approximation to the exact formula. We have deliberately rounded the
computed values to avoid the illusion of precision.

expected, then a sample size curve, describing the sample size
for a particular base rate, can be easily produced.
Is it plausible that most trials will have risk reductions within
a narrow range? Yusuf has argued this case and has produced
evidence from 42 cardiovascular trials of chronic interventions
(such as aspirin) and 84 trials of acute interventions (such as
intravenous nitrates).9 Relative risk reductions ranged from 8%
to 36% (mean 15%) for the chronic interventions and 6% to
24% (mean 19%) for the acute interventions. Averaging all
studies, the mean relative risk reduction was 16.5% (SD 8.4%).
The table⇓ shows sample sizes for base rates of 2%, 5%, 10%,
and 20% using an adapted sample size formula. Though the
variation in sample size overall is very large, from 250 to 19
800 per group, for a particular base rate, the range of sample
sizes reduces to roughly 10 to one.

Relations between continuous variables
The relation between two continuous variables can be assessed
with the correlation coefficient. The standard error of the
correlation is roughly (1−r2)/√(n−2). If we assume that typical
correlations are in the range of 0.2 to 0.5, then with α=0.05 and
a power of 0.80 the estimated sample size (n=2+8×(1−r2)/r2)
ranges from 44 to 194. Why 0.2 to 0.5? Pragmatism. A
correlation of less than 0.2 accounts for less than 4% of the
variance; a correlation of 0.1 accounts for only 1%. It is difficult
to imagine why anyone would care about a relation that explains
less than 4%. On the other hand, correlations greater than 0.5
are fairly rare and researchers would be unlikely to design a
study in the hope of detecting a correlation this large.With these
bounds, we might accept any sample size in the range 50-200.
For multivariable analyses such as multiple regression, logistic
regression, and factor analysis, everything depends on
everything else. No exact predictions are really feasible.
Consequently, rules of thumb are often adopted that the sample
size should be 5, 10, or 20 times the number of variables. The
maths is therefore simple: for five predictors, sample sizes of
25 might be acceptable, and a sample size of 100 would meet
the most stringent rule of thumb.

Conclusions
Sample size estimates are like the emperor’s clothes; we
collectively act in public as if they possess an impressive aura

of precision, yet privately we (statisticians) are acutely aware
of their shortcomings and extreme imprecision. Clearly, all
would benefit from a new approach. In many circumstances,
researchers should be encouraged to use the “off the peg” sample
sizes we have suggested, although a “made to measure”
calculation can be used if sufficient information is available to
justify it. More generally, we support the position of Bacchetti2
that any attempt to determine a precise sample size must
necessarily consider more than simple numerical issues and
should explicitly deal with broader ethical issues underlying
the choice.
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Summary points

Conventional sample size calculations, based on guesses about statistical parameters, are subject to large uncertainties
There is sufficient evidence to justify establishing expected normative ranges of sample sizes for common research designs
Normative ranges can be modified if good evidence exists on which to base a sample size calculation

Table

Table 1| Sample sizes for various combinations of relative risk reduction and base rate*

Relative risk reduction

Base rate 0.250.160.08

2530061875247 5000.01

12550306251225000.02

4 86511875475000.05

2 3005625225000.1

10252 500100000.2

2556252 5000.5

*Sample size based on the approximate formula n=16×(BR(1−BR))/ARR2, where BR=base rate and ARR=absolute risk reduction. Sample sizes are rounded to
the nearest 5 or 0.
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