
Interpreting diagnostic accuracy studies for patient
care
A diagnostic test accuracy study provides evidence on how well a test correctly identifies or rules
out disease and informs subsequent decisions about treatment for clinicians, their patients, and
healthcare providers.The authors highlight several different ways in which data from diagnostic test
accuracy studies can be presented and interpreted, and discuss their advantages and disadvantages.
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Studies of tests that aim to diagnose clinical conditions that are
directly applicable to daily practice should present test results
that are directly interpretable in terms of individual patients—
for example, the number of true positive and false positive
diagnoses. We do not examine measures used for early
experimental (exploratory) studies, in which diagnostic
thresholds have not been established.
Results obtained from a diagnostic test accuracy study are
expressed by comparison with a reference standard of the “true”
disease status for each patient. Thus, once a clinically relevant
diagnostic threshold has been established, patients’ results can
be categorised by the test as true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) (fig 1⇓).
Diagnostic accuracy can be presented at a specific threshold by
using paired results such as sensitivity and specificity, or
alternatively positive predictive value (PPV) and negative
predictive value (NPV) (see fig 1). Other methods summarise
accuracy over a range of different test thresholds—for example,
the area under the receiver operator curve (ROC AUC, see fig
1).
Despite the simplicity of the 2×2 structure, the presentation and
interpretation of tests and comparisons between them are not
straightforward. Graphical presentation can be highly
informative, in particular an ROC plot, which is a plot of
sensitivity against 1−specificity (or false positive rate). Figure
2⇓ shows an ROC plot of test accuracy of a single test at
different thresholds. ROC plots are also used within studies to
compare different tests, to compare different groups of patients,
and to investigate variability between different test observers
(readers). ROC plots are useful in systematic reviews to present
results from multiple studies.

Several concepts need to be considered carefully in the
interpretation of data from a diagnostic accuracy study:

• How does accuracy change with different diagnostic
thresholds?

• If paired outcomes (such as sensitivity and specificity) are
compared for different scenarios, they often change in
opposite directions. For example, sensitivity is often higher
in one test and specificity higher in the other. Which is
more important?

• What are the clinical consequences of a missed (false
negative) diagnosis or a false positive diagnosis? Can these
risks be presented together—for example, as a relative
benefit?

• What is the best way to include disease prevalence in the
summary of clinical benefit?

• Are results presented in terms of what happens to individual
patients, which are often the easiest for clinicians (and their
patients) to understand?1

Reporting test accuracy at different
thresholds
Presenting results at a single threshold
When a test has only a single threshold or cutpoint value (for
instance, positive or negative for disease, such as a biopsy),
results are naturally presented in pairs, usually sensitivity and
specificity, or PPV and NPV (see fig 1). Although PPV (and
NPV equivalently) allow easy comprehension of the probability
that a patient with a positive test result has the disease, when
tests are compared in the same patients it is not straightforward
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to use these measures because the calculation of confidence
intervals is complex.2

Tests that yield results on a continuous scale require
specification of a test threshold to define positive and negative
results. Changing the threshold alters the proportion of false
positive and false negative diagnoses. Figure 2⇓ shows how the
sensitivity of CA19-9 for diagnosis of pancreatic cancer
increases as the threshold value is lowered from 1000 to 15
U/ml, while specificity decreases.

Presenting results at multiple thresholds
For many diagnostic tests, however, there are multiple potential
thresholds at which different clinical decisions could be made,
often reflecting diagnostic uncertainty. For example, the
mammographic BI-RADS classification for breast screening
has six categories: 0=additional imaging evaluation required;
1=negative; 2=benign findings; 3=probably benign finding;
4=suspicious abnormality; and 5=highly suggestive of
malignancy.3

For many diagnostic tests there is no consensus regarding the
clinically optimal threshold that separates a positive from a
negative result as it is difficult to agree at which threshold it is
acceptable to risk missing disease. With measures such as
sensitivity and specificity, diagnostic accuracy can be reported
for each test threshold relevant to the management of patients.
Even then, it is important to understand that not all thresholds
are equally important. For the diagnosis of breast cancer with
the BI-RADS scale, the threshold between “highly suggestive
of malignancy” and “suspicious abnormality” is clearly more
clinically important to a patient and her doctor than the threshold
between “benign” and “probably benign.”

Presenting a performancemeasure combined
across thresholds
Alternatively, diagnostic accuracy can be summarised by
combining accuracy across a range of thresholds with a measure
such as ROCAUC (fig 1).4This, however, can be a disadvantage
if thresholds that are clinically relevant are combined with those
that are clinically nonsensical.5Clinically, information is needed
on how a test performs in patients at a clinically relevant
threshold rather than a summary of how the test might perform
across all possible thresholds.

Are false positive and false negative
diagnoses equally important?
No diagnostic test is perfect and almost all tests will sometimes
miss disease or indicate disease in normal patients (see FN and
FP, respectively, in fig 1). False negative and false positive
diagnoses, however, are rarely equally important. Missing a life
threatening disease will probably be regarded by a patient (and
his or her doctor) as much more important than a false positive
diagnosis in a healthy patient. For example, a study of attitudes
and knowledge of mammography for screening for breast cancer
found that 63% of women thought that 500 or more women
receiving false positive results was reasonable for each life
saved.6

The relative importance of a false negative versus a false positive
diagnosis (also called relative misclassification cost) varies
according to where the test fits in the patient pathway and who
is making the assessment. For example, funders or
commissioners of healthcare might have a different perspective
from patients or clinicians as additional false positive diagnoses
will increase costs. The relative importance of additional false

negative versus additional false positive diagnoses is particularly
important in decisions about which of two tests is
“better”—which is more important, an increase in sensitivity
or an increase in specificity? To evaluate which test is better,
performance needs to incorporate clinical costs.

Presenting diagnostic accuracy for
patients
For diagnostic accuracy studies to usefully inform clinical
practice, their results should be related to decisions regarding
management of patients. Presentation in terms of individual
patients is often best,1 and formats such as animations with
smiley faces have been successful.7

Interpretation in terms of patients is straightforward and direct
for paired measures such as sensitivity and specificity, PPV and
NPV, or positive and negative likelihood ratios. Sensitivity and
specificity provide test accuracy in terms of patients in a
population, although interpretation for an individual patient
with unknown disease status is less obvious. PPV and NPV are
useful to understand the probability that a patient with a given
positive or negative test result has a diagnosis of disease.
Positive and negative likelihood ratios are useful to understand
the role of a test result in changing a clinician’s estimate of the
probability of disease in a patient. These paired measures can
be combined into a single measure (for example, “net benefit”
measure; see below), which is also easily understood,
particularly when it is reported with the component paired
measures.
By contrast, interpretation of a single numerical value of the
ROC AUC is problematic because the summary across all
thresholds is difficult to reconcile with a specific threshold for
the individual patient. Also ROC AUC is hard to interpret in
practice, as it is the probability that randomly selected pairs of
patients, one with and one without disease, would be ordered
correctly for probability of disease (see fig 1). However, patients
do not walk into the clinician’s room in pairs,8 and patients want
their results and diagnosis, rather than the order of their results
compared with another patient.

Comparing the performance of two
diagnostic tests
Three main approaches can be used to compare the diagnostic
accuracy of two tests that differ depending on whether a specific
test threshold is used or performance is averaged across multiple
thresholds. They also vary in whether they can be interpreted
in terms of patients and whether they can incorporate clinical
context, such as relative weightings of false negative and false
positive diagnoses and also disease prevalence. Ideally,
diagnostic tests should be compared within the same patients
or, if this is not practical, on randomised groups from the same
population of patients. This ensures that differences in observed
test results are because of the tests rather than differences in
characteristics of patients or study methods.

Paired measures at specific thresholds
The first method compares two tests according to differences
in paired measures such as sensitivity and specificity. For
example, of two biomarker tests for pancreatic cancer, CA 19-9
with 83% sensitivity and 81% specificity can be compared with
CA 242 with a sensitivity of 74% and specificity of 91%: CA
19-9 has 9% higher sensitivity, but 10% lower specificity.9 The
clinical context of these differences in sensitivity and specificity
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would be enhanced by using clinically relevant disease
prevalence to report the difference in the actual number of
patients with true and false positive diagnoses. For a given
increase in sensitivity, if the prevalence of disease is twice as
high, then the number of patients who receive a true positive
diagnosis is doubled. Nevertheless, paired measures are
transparent enough for healthcare providers or patients to
incorporate their own relevant contextual information.

Summarymeasure at specific thresholds: net
benefit methods
In the second approach, a single overall measure of diagnostic
performance can be presented by using net benefit or net utility
methods, calculated from test performance at a specific clinically
relevant threshold.10-17 Several of these measures are based
directly on the difference in sensitivity and specificity between
the two tests being compared at one10 13 18 or more than one
clinical threshold.16 19 A single overall measure of diagnostic
performance is often preferred for simplicity when guiding
healthcare spending or regulatory approval decisions. These
methods directly incorporate the contextual information
regarding prevalence and relative importance of false negative
and false positive diagnoses.
The weighted comparison (WC) net benefit measure13 method
weights differences in sensitivity and specificity between two
tests by the relative clinical costs and disease prevalence (see
box). With the previous example of CA 19-9 and CA 242, the
net benefit is positive (weighted comparison=0.07) if CA 19-9
is used instead of CA 242, at a disease prevalence of 33%, and
a 10-fold higher relative weighting of true positive diagnoses
over false positive diagnoses (box). To aid interpretation, the
weighted comparison can be converted to a net benefit
equivalent to 23 more true positive test results per 1000 patients,
based on actual values of 30 more patients receiving a true
positive result and 66 more patients receiving a false positive
diagnosis.

Single measure averaged across multiple
thresholds
A third approach calculates a single overall measure of
diagnostic accuracy but averaged across multiple test
thresholds—for example, ROC AUC20 (fig 1) and the newer
H-measure.21We illustrate ROCAUCwith two tumour markers
measured on the same patients9; CA 19-9 seems to be the
superior test as it has an AUC of 0.86, which is greater than
0.70 for CA 125 (fig 3⇓).

Problems with ROC AUC for diagnostic
performance
The use and interpretation of ROC AUC as a measure of
diagnostic performance highlights several advantages6 and
disadvantages.4 22 Somewhat surprisingly, ROC AUC remains
the recommendedmeasure of effectiveness for some evaluations
of devices submitted to the US Food and Drug Administration,
for example in imaging and computer aided detection.23

AUC or partial AUC?
The standard ROCAUC averages across all possible thresholds.
Not all test thresholds, however, are clinically relevant.5 For
many tests, thresholds offering high sensitivity (such as greater
than 80%) are not clinically useful because specificity is too
low (see fig 3a and b)⇓; patients with false positive results would
overwhelm diagnostic services. One way to deal with this is to

calculate a partial ROC AUC (pAUC), thus restricting
comparisons to sensible thresholds.24 For example, by excluding
sensitivity above 80%, the partial ROC AUC is 0.27 for CA
125 and 0.15 for CA 19-9, suggesting that CA 125 is the superior
test (see fig 3c and d)⇓. It could also be argued that a sensitivity
of less than 70% is unlikely to be clinically useful (too little
disease would be detected). A pAUC therefore restricted to the
range between 70% and 80% sensitivity produces values of 0.12
for CA 125 and 0.11 for CA 19-9, suggesting the tests are
equally effective (fig 3e and f⇓).
This example illustrates a dilemma in ROCAUC interpretation.
Should the AUC be calculated across all test thresholds
(including those that are clinically illogical5 25) or should a pAUC
be calculated, restricted to clinically sensible thresholds? If a
partial AUC approach is taken, as illustrated in figure 3, even
small changes in the choice of threshold can affect which test
has the greater AUC and is classified as superior.26

Extrapolation beyond available data
The choice between standard AUC or pAUC needs particular
consideration when available data are restricted to a small region
of the ROC plot space. To calculate a standard AUC the ROC
curve must be extrapolated beyond the available data so that
the whole AUC encompassing 0% to 100% sensitivity can be
calculated. This is a key issue in systematic reviews in which
data from included studies are often limited to a small region
of ROC space.
Moreover, the extrapolated region of the curve dominates the
AUC as it includes the right hand side of the plot, which
dominates the ROCAUC. This region lacks clinical importance
because it is based on thresholds where over half the patients
receive false positive results. The poor utility of the full AUC
has been noted in breast screening, where high specificity is
important to avoid large numbers of false positive results leading
to unnecessary biopsies in a population with a low prevalence.25

Incorporating relative misclassification costs
ROC AUC does not allow incorporation of the relative clinical
consequences of false negative and false positive diagnoses. It
is often believed that ROC AUC uses equally balanced
misclassification costs for these diagnoses, but this applies only
at one point on the ROC curve, where the gradient equals one.
In reality, the misclassification costs for false negative and false
positive diagnoses vary along the ROC curve and are dictated
by its shape14 and therefore do not relate to any clinically
meaningful information. This has been described as nonsensical
and fundamentally incoherent.27 If ROC AUC is used as a
performance measure, then when we compare two ROC curves
with different shapes, different balances of misclassification
costs of false negative and false positive diagnoses underlie
each curve.21 This is analogous to comparing the height of two
people by using only the numerical output from two rulers,
regardless that one ruler measures in inches and the other in
centimetres.27

Incorporating disease prevalence
To be useful as a performance measure, ROC AUC needs to
use realistic disease prevalence. For a given ROC curve, the
calculated AUC is the same regardless of the underlying
prevalence of the study data, given the same disease severity.
When ROCAUC is used to compare two tests, this is sometimes
wrongly perceived as evaluation at 50% prevalence. As with
misclassification costs, unless the ROC curve corresponds to a
straight line, it is not possible to fix a single disease prevalence
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Net benefit methods to measure diagnostic performance

Net benefit measures can provide an overall impact across changes in paired measures. For example, the weighted comparison (WC)
measure13 is an index weighting the difference in sensitivity and difference in specificity of two tests, taking into account the relative clinical
cost (misclassification costs) of a false positive compared with a false negative diagnosis and disease prevalence. We note that the WC
measure is similar to the net reclassification index (NRI),14 if the latter is adapted to account for disease prevalence and relative misclassification
costs.
WC=∆sensitivity+[(1−prevalence/prevalence)×relative cost (FP/TP)×∆specificity]

What do weighted comparison values mean?
• Positive WC values indicate a net benefit
• Zero WC values show no net benefit
• Negative WC values show a net loss
• 95% confidence intervals and thresholds for clinical benefit are used to indicate significance of results. To aid interpretation, WC can
be converted into an equivalent increase in true positive patients per 1000.

Example calculating WC for two biomarker tests of pancreatic cancer
Comparing two tumour marker tests for diagnosis of pancreatic cancer, CA 19-9 with 83% sensitivity and 81% specificity to CA 242 with
74% sensitivity and 91% specificity,9 the difference in sensitivity (∆sensitivity) is 9% (equivalent to 0.09) and the difference in specificity
(∆specificity) is −10% (or −0.10). So in a population with estimated disease prevalence of 33%, and a 10-fold higher relative weighting for
true positive diagnoses compared with false positive diagnoses, the WC is obtained as:
WC=0.09−(2×0.1×0.10)=0.07
As WC is positive there is an increased net benefit favouring CA 19-9.
To aid interpretation, WC can be converted into an equivalent increase in true positive patients per 1000, if all the benefit was focused into
TP patients by calculating WC×prevalence×1000.
A WC of 0.07 converts to a benefit equivalent to 23 more true positive patient results per 1000 patients, based on actual values of 30 more
patients receiving a true positive result and 66 more patients receiving a FP diagnosis, at prevalence and relative weighting as specified.
Other single diagnostic measures include: other net effect measures10-12 15-17 30 and net reclassification index.14

with ROC AUC, as the gradient changes along the curve. To
our knowledge this issue has not been previously highlighted.
This is problematic when ROC AUC is used to compare tests
because the absolute benefit of the difference in sensitivity and
specificity is clearly dependent on disease prevalence.

Summary
Diagnostic test accuracy studies need to provide evidence in a
comprehensible and intuitive format that facilitates choice of
test for clinicians, their patients, and healthcare providers.
Results should be reported in the context of clinical management
decisions made at clinically sensible and important thresholds,
preferably in terms of patients. For comparisons of tests,
differences in true positive and false positive diagnoses should
be reported, and it is important that any overall measures of
diagnostic accuracy should incorporate relative misclassification
costs to account for the fact that false negative and false positive
diagnoses are rarely clinically equivalent. Measures need to be
interpreted at a disease prevalence that reflects the real clinical
situation. Analyses based on net benefit measures achieve these
aims. In contrast, methods based on ROCAUCoften incorporate
thresholds that are clinically nonsensical, do not account for
disease prevalence, and cannot account for the differing clinical
implications of false negative and false positive diagnoses. We
therefore caution researchers against solely reporting ROCAUC
measures when summarising diagnostic performance, and
caution healthcare providers against using ROC AUC alone to
inform decisions regarding diagnostic performance. We
recommend that diagnostic accuracy is presented by using paired
measures with clinical context or using net benefit measures
with their associated paired measures.
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Summary box

• Diagnostic test accuracy studies should present data in a way that is comprehensible and relevant to clinicians, their patients, and
healthcare providers when making clinical management decisions

• The most relevant and applicable presentation of diagnostic test results allows inclusion of four key components: interpretation in
terms of patients; clinically relevant values for test threshold(s); realistic disease prevalence; and clinically relevant relative gains and
losses in terms of patients (that is, true positive and false positive diagnoses)

• Presenting diagnostic accuracy as paired measures, such as sensitivity and specificity, or as net benefit summaries with component
paired measures, allows inclusion of these four components whereas using the area under the ROC curve as a diagnostic performance
measure does not
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Figures

Fig 1 Diagnostic accuracy measures

Fig 2 ROC plot of test accuracy at different thresholds. Data from systematic review of CA19-9.29 Threshold values are
shown in U/mL. At 15 U/mL, test accuracy is 92% sensitivity and 60% specificity (1−specificity=40%)
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Fig 3Use of ROC AUC to compare two tests: CA 19-9 and CA 125. Shaded areas indicate ROC AUC for regions of interest.
Blood samples from 51 control patients with pancreatitis and 90 patients with pancreatic cancer were analysed for CA 125
and CA 19-931
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