INTRODUCTION

Lactate measurement in the emergency department (ED) is a source of both guidance and confusion. Although lactate can be a useful tool when interpreted correctly, improper interpretation can mislead clinicians and result in inappropriate care and unnecessary therapies. Our understanding of lactate has developed considerably since it was first isolated in sour milk by Swedish chemist Carl Wilhelm Scheele in 1780. Since then, lactic acid and its conjugate base, lactate, have become integral parts of the diagnostic, therapeutic, and prognostic management of patients in the ED. However, significant controversy and misinterpretation surround the use of lactate, particularly in light of more recent national sepsis quality measures. We provide a review of the physiologic description of lactate and its application in the ED.

Chemistry

Lactic acid is an organic α-hydroxy acid with the chemical formula CH₃CH(OH)COOH. With a pKₐ of 3.86, lactic acid readily deprotonates a hydrogen ion to form its conjugate base, the lactate ion. At physiologic pH in human beings, the ratio between the lactate ion and lactic acid is approximately 3,000:1, so the lactate anion is commonly referred to as "lactate." Lactate exists as 2 stereoisomers: L-(+)-lactate and D-(−)-lactate. L-lactate comprises nearly the entirety of lactate present in human beings because mammalian cells exclusively contain L-lactate dehydrogenase, the enzyme that converts pyruvate to lactate. In normal physiologic states, D-lactate is produced in nanomolar concentrations in mammalian cells. However, it may accumulate in certain pathologic conditions and cause a metabolic acidosis. We will refer to L-lactate as lactate unless otherwise specified.

Physiologic Function of Lactate

In times of both rest and exercise, lactate serves 2 important functions: maintaining blood glucose by acting as a carbon substrate for gluconeogenesis, and acting as an oxidizable agent that can be shuttled from areas of high glycolysis and glycogenolysis activity to areas of high cellular respiration to engage in oxidative phosphorylation. Lactate uptake and use is increased in the heart and brain under times of metabolic stress, including sepsis and shock, with the heart using lactate for up to 60% of its metabolic demand, and the brain up to 25%. The myocardium oxidizes lactate as a carbon source for oxidative phosphorylation and is a net consumer of lactate. During states of moderate exercise, myocardial uptake of lactate increases proportionally with the workload. Similarly, neurons and astrocytes in the brain will take up lactate and oxidize it as a fuel source to generate energy both at rest and during times of hypoglycemia, exercise, and cardiopulmonary resuscitation.

Lactate Homeostasis

Traditionally, lactate has been viewed as an end product of anaerobic metabolism largely in skeletal muscle, a concept known as the “oxygen debt model” that was pioneered in the 1920s. In the setting of decreased oxygen availability, pyruvate is produced from glucose through glycolysis and then reduced to lactate by L-lactate dehydrogenase. This reaction allows nicotinamide adenine dinucleotide (reduced) to be oxidized to nicotinamide...
adenine dinucleotide (oxidized), which serves as a necessary oxidizing agent in the generation of adenosine triphosphate (Figure 1). In this conventional perspective, lactate was considered simply a metabolic waste product generated as a cost for resupplying the cell with nicotinamide adenine dinucleotide (oxidized).

More contemporary understanding recognizes lactate as a key player both in energy use and oxidation/reduction reactions, even under aerobic conditions. Several studies have demonstrated that lactate was produced by glycolysis at rest when skeletal muscle was fully oxygenated and during periods of activity in which the anaerobic threshold had not been reached. The proinflammatory cytokine milieu with increased catecholamine levels, often observed in sepsis or other states of physiologic stress, causes an increased metabolic state. Glucose use is increased, and so is the presence of transporters and enzymes that are associated with glycolysis and lactate metabolism. Increased glycolysis leads to an increased concentration of pyruvate, which exceeds the oxidative capacity of the tricarboxylic acid cycle cycle and is subsequently converted to lactate.

Metabolism

The average lactate turnover rate at a physiologically steady state is approximately 20 mmol/kg per day. The liver metabolizes approximately 70% to 75% of circulating lactate. This typically occurs in periportal hepatocytes, where lactate is used for either gluconeogenesis or, less so, oxidation. The glucose created through gluconeogenesis is then released back into circulation to be redistributed through the body. Several factors are associated with decreased hepatic clearance, including acidosis, underlying cirrhosis, and hypoperfusion. Renal clearance accounts for approximately 25% to 30% of lactate removal. The majority occurs in the renal cortex, where cells will take up lactate and then either oxidize it for energy or use it for gluconeogenesis to create glucose to be exported back to the renal medulla or systemic circulation. Only an estimated 10% of renal clearance is through actual urinary excretion.

Classification of Lactic Acidosis

A “lactic acidosis” refers specifically to an elevated serum lactate level with a pH less than or equal to 7.35. In contrast, hyperlactatemia has several definitions, but most commonly refers to a serum lactate level greater than or equal to 2 mmol/L, regardless of pH. In 1976, Cohen and Woods categorized lactic acidosis into 2 groups (type A and B) based on the presence or absence of clinical evidence of tissue hypoxia, and provided a useful framework to develop management strategies (Table 1). The cause of lactic acidosis may be multifactorial and might not exclusively fall into either type A or B.

Type A lactic acidosis is defined by lactate accumulation in the setting of poor tissue perfusion or oxygenation. Common clinical entities leading to type A lactic acidosis include shock, cardiac arrest, severe hypoxemia, severe anemia, regional tissue hypoperfusion, or excessive muscular contraction. In these scenarios, oxygen demand outstrips the available oxygen supply, either systemically or regionally, leading to lactate accumulation. Type B lactic acidosis refers to lactate elevation in the absence of cellular hypoxia. Common causes of type B lactate accumulation in the ED include medications (eg, albuterol, epinephrine) or underlying disease process states (eg, sepsis, malignancy, end-stage liver disease, diabetic ketoacidosis).

Accumulation of D-lactate leading to an acidosis is rare and more difficult to recognize because measuring it requires a separate analytic test. In short bowel syndrome, decreased digestion of carbohydrates leads to the presence of sugars in the colon. Bacteria then ferment these sugars to create D-lactate and additionally convert L-lactate to D-lactate. Diabetic ketoacidosis and propylene glycol administration have also been associated with D-lactate buildup.

LABORATORY EVALUATION

Methods for Lactate Measurement

Standard measurement of lactate typically occurs either through enzymatic spectrophotometry or electrode-based
amperometry. Both methods correlate extremely well when done properly. After blood is drawn, RBC metabolism continues to generate lactate, particularly if significant delays exist before analysis. This undesirable elevation can be diminished by immediately cooling the blood sample or by use of a “gray top” collection tube, which contains sodium fluoride, a preservative that inhibits cellular metabolism.25 However, a specimen analyzed within 15 minutes from drawing blood will have minimal distortion of lactate, even if no method to prevent additional metabolism is performed.26 Whole blood and finger-stick samples can be analyzed with electrode-based amperometry at the bedside, providing a point-of-care lactate level, whose values correlate well with standard assays and provide results significantly quicker.27,28

Effect of Tourniquet Use on Lactate
There has been concern that tourniquet use may elevate local lactate levels by leading to transient ischemia and subsequent anaerobic metabolism. An older study involving arterial tourniquet application in the operating room to induce ischemia resulted in a linear increase in serum lactate level, up to 206% of baseline values, after 75 minutes of tourniquet application.29 However, the application of a venous tourniquet does not significantly alter venous lactate levels.26,30

Table 1. Classification of elevated lactate level as defined by Cohen and Woods.24

<table>
<thead>
<tr>
<th>Type</th>
<th>Cause</th>
<th>Clinical Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Lactate accumulation in the setting of poor tissue perfusion or hypoxia (either regional or global)</td>
<td>Global: Shock (cardiogenic, obstructive, distributive, hypovolemic) or profound hypotension, severe anemia, cardiac arrest, trauma, burns, carbon monoxide, cyanide Regional: Limb or mesenteric ischemia, localized trauma or burns, compartment syndrome, necrotizing soft tissue infection, microcirculatory dysfunction*</td>
</tr>
<tr>
<td>B</td>
<td>Lactate accumulation in the absence of clinical evidence of tissue hypoperfusion or hypoxia</td>
<td>Exertional: Convulsions or seizure, increased work of breathing, strenuous exercise</td>
</tr>
<tr>
<td>B1</td>
<td>Lactate elevation associated with underlying disease process</td>
<td>Malignancy, sepsis, thiamine deficiency, liver failure, renal insufficiency, pheochromocytoma, diabetic and alcoholic ketoacidosis</td>
</tr>
<tr>
<td>B2</td>
<td>Lactate elevation caused by a drug or toxin</td>
<td>Metformin, acetaminophen, β₂-agonists (including albuterol, epinephrine), sympathomimetics, theophylline, nucleoside reverse-transcriptase inhibitors, alcohol, toxic alcohols, propofol, cyanide, carbon monoxide</td>
</tr>
<tr>
<td>B3</td>
<td>Lactate elevation caused by congenital errors of metabolism</td>
<td>Pyruvate dehydrogenase deficiency, pyruvate carboxylase deficiency, glucose-6-phosphatase deficiency, congenital mitochondriopathies</td>
</tr>
</tbody>
</table>

*Area of ongoing research.

Difference Between Arterial and Venous Lactate Results
Arterial and peripheral venous lactate values correlate very well when the results fall within normal limits; however, mild discrepancies arise with hyperlactatemia.31-36 Central lactate values correlate extremely well with arterial values at all levels.37 Arterial and central blood samples represent lactate that is systemically circulated, whereas venous samples reflect the local milieu, thus explaining the small discrepancies between these sites. However, drawing arterial blood can be painful, time consuming, and challenging in certain patient populations. It is therefore appropriate, particularly in patients without an arterial line, to start with and trend peripheral venous samples.

Effect of Lactated Ringer’s Solution on Serum Lactate
Lactated Ringer’s solution is a commonly administered resuscitation fluid that may improve patient-centered outcomes compared with normal saline solution, particularly in septic patients.38-40 Each liter of lactated Ringer’s solution contains 28 to 29 mmol of sodium lactate. In a 70-kg adult, approximately 1,400 mmol (20 mmol/kg) of lactate is metabolized daily. To our knowledge, there is no published evidence that a bolus of lactated Ringer’s solution significantly increases lactate compared with normal saline solution, although transient
LACTATE IN SEPSIS

Among its many uses as a diagnostic test, lactate level has long been used as a marker of resuscitation, for risk stratification, and as a mortality prediction tool in sepsis. Despite a commonly held belief that elevated lactate levels in sepsis occur as a consequence of anaerobic metabolism from tissue malperfusion, there is mounting evidence that this may not be the primary source of lactate production, particularly in patients without overt shock physiology. Indeed, accelerated aerobic glycolysis from adrenergic stress is now thought to be a significant cause of hyperlactemia in septic patients, with additional contributions from impaired clearance, medication effects, microcirculatory dysfunction, and tissue malperfusion.

Cytopathic hypoxia and direct mitochondrial impairment have been proposed as another cause, although the exact mechanism remains incompletely understood and further research is required.

Anatomic Location of Lactate Generation in Sepsis

The specific anatomic site of lactate generation in septic patients remains controversial. The 2 regions suspected to generate the majority of lactate in sepsis are the lungs and skeletal muscle. The strongest evidence comes from the lungs as generators of lactate in sepsis. One hypothesis is that neutrophil β2-receptor stimulation by endogenous catecholamines causes significant lactate production, which is further substantiated by the large number of these receptors found in the lungs. Muscle tissue has been shown to have significantly higher lactate levels than supplying arteries in septic shock. An additional source of lactate elevation in sepsis is leukocyte glycolysis. Like other tissues, inflammatory cells undergo accelerated aerobic glycolysis during sepsis and have a markedly increased lactate output, similar to that which occurs in the lungs.

Microcirculatory dysfunction has been proposed as a source of lactate in sepsis. Proinflammatory cytokines lead to endothelial and hematologic cell dysfunction, causing heterogeneous areas of low or slow flow at the capillary-venule-arteriole level. This leads to scattered areas of tissue hypoxia despite normal macrocirculatory parameters. Using dark-field microscopy to visualize the microcirculation, investigators have linked the density of microscopic vascular dysfunction to illness severity, elevated lactate levels, and worsened outcomes. Further study is needed to determine the importance of microcirculatory dysfunction in sepsis and potential therapies to correct it.

Anaerobic Metabolism in Sepsis

Although tissue hypoxia and resultant anaerobic metabolism will result in increased lactate production, this relationship has been challenged as the primary cause of hyperlactatemia in sepsis. Certain septic patients develop vasopressor-dependent hypotension, yet never experience an elevated lactate level. Another subset of septic patients develops hyperlactatemia with associated high mortality, yet lacks hypotension. Additionally, if anaerobic metabolism from tissue hypoxia were the main source of lactate in sepsis, we would expect to see several things. First, interventions to increase oxygen delivery should consistently decrease lactate levels. However, several studies have failed to support this. Furthermore, studies evaluating tissue hypoxia in sepsis and septic shock have found no evidence of cellular hypoxia. Tissues with an adequate oxygen supply should not generate lactate, yet the lung is a major source of lactate in sepsis.

Lactate in “Occult Hypoperfusion” and “Cryptic Shock”

The terms “occult hypoperfusion” and “cryptic shock” have been used to describe patients with elevated lactate levels and normal blood pressure, and reflect their relatively high mortality rate. Indeed, in the initial early goal-directed therapy trial, one of the inclusion criteria was serum lactate level greater than or equal to 4 mmol/L, regardless of blood pressure. In patients with suspected infection, elevated lactate levels were associated with increased 28-day mortality regardless of blood pressure, and used the term “occult hypoperfusion” to describe this subset of patients, which had previously been used for patients with traumatic injuries and heart failure syndromes. Later, Puskarich et al showed that septic patients with cryptic shock, defined as a lactate level greater than or equal to 4 mmol/L without hypotension, and those with “overt” shock, defined as hypotension after a fluid challenge, had similar mortality after protocolized therapy.

LACTATE IN OTHER CONDITIONS

A recent study evaluated patients admitted with a lactate level greater than 4 mmol/L and found 23.2% of cases were from infection, 20% from seizures, and the remaining from causes unrelated to infection.
Seizures, Convulsions, and Extreme Exertion

Seizures are known to cause hyperlactemia as a result of local muscle tissue hypoxia and resultant anaerobic metabolism.84 One study evaluating 157 patients with generalized tonic-clonic seizure showed that 84.7% had elevated lactate levels, with a median of 3.64 mmol/L, but with levels as high as 17 mmol/L.85 Patients with hyperlactemia caused solely by seizures should have rapid clearance within 1 to 2 hours after the seizure resolution.71,86 There has been no correlation between degree of lactate elevation and outcome.71 Patients with extreme exertion or agitation, particularly those in physical restraints, develop hyperlactatemia through a similar mechanism. An observational study found that 95% of collapsed Boston Marathon runners had an average lactate level of 3.45 mmol/L.87

Thiamine Deficiency

Thiamine is an essential cofactor in the conversion from pyruvate to acetyl coenzyme A. A deficiency in thiamine will therefore result in an inability of pyruvate to enter the tricarboxylic acid cycle and rather undergo anaerobic metabolism, leading to elevated lactate levels (Figure 1). Patients with long-term alcohol use, poor nutritional status, sepsis, or history of gastric bypass surgery are at particular risk for hyperlactatemia as a result of thiamine deficiency.88 Recent studies have shown that the administration of intravenous thiamine to septic patients is associated with faster lactate clearance and decreased mortality, particularly those with underlying thiamine deficiency or alcohol use disorders.89-92

Toxins and Medications

Although lactate elevation in the majority of toxicities is thought to be primarily due to a type B lactic acidosis, the underlying mechanisms for lactate production are often complex and multifactorial. Mechanisms include inhibition of oxidative phosphorylation or mitochondrial damage, β₂-adrenergic stimulation, shock states, increased muscle activity, seizures, renal failure, and hepatic toxicity. Table 2 provides a more comprehensive list of medications and toxins associated with lactate elevation.93

Acetaminophen. Lactate elevation has been proposed to be caused by 2 mechanisms in patients with acetaminophen toxicity. Animal models have shown that large acetaminophen ingestions directly inhibit the mitochondrial electron transport chain before any laboratory evidence of hepatotoxicity.94,95 Later, lactate elevation occurs as a result of increased N-acetyl-p-benzoquinone imine production, the toxic metabolite associated with liver injury. Lactate elevation in acute liver failure portends a poor prognosis.94

β₂-Agonists (albuterol, epinephrine). β-Agonists have been shown to result in lactate elevation primarily through accelerated glycolysis, even in fully aerobic conditions.32 The association between albuterol and lactate elevation was initially limited to case reports; however, recent data suggest it is likely a relatively common phenomenon. A study evaluating 105 children admitted with severe asthma exacerbation reported that 83% had a lactate level greater than 2.2 mmol/L and 45% had lactate levels greater than 5 mmol/L.96 Lactate elevations associated with albuterol typically resolve quickly after completion of therapy.97 Epinephrine also causes an elevated lactate level through a similar mechanism.75,76,98 Previous investigations into the use of epinephrine in septic shock have found that survivors have higher lactate levels in the first hours of resuscitation compared with nonsurvivors.99

Carbon monoxide and cyanide. Carbon monoxide reversibly binds to hemoglobin with approximately 200 to 300 times the affinity of oxygen, resulting in decreased arterial oxygen delivery. Furthermore, it binds to cytochrome A, inhibiting oxidative phosphorylation.100,101 Lactate elevation in pure carbon monoxide poisoning is
<table>
<thead>
<tr>
<th>Toxin or Medication</th>
<th>Mechanism of Lactate Elevation</th>
<th>Recommended Therapy or Antidote</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrin</td>
<td>Protein inhibitor and causes direct cellular damage, with resultant hepatotoxicity causing poor clearance, seizures</td>
<td>Supportive care</td>
<td>Toxic component of jequirity beans</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>Multiple mechanisms, including direct inhibition of electron transport chain (in the absence of hepatotoxicity), impaired clearance after direct hepatocyte toxicity because of increased NAPQI production</td>
<td>N-acetyl cysteine, aggressive supportive care, liver transplantation if indicated</td>
<td>Most common cause of acute liver failure in developed countries</td>
</tr>
<tr>
<td>Albuterol</td>
<td>β_{2}-Receptor activation</td>
<td>N/A</td>
<td>Lactate elevation associated with albuterol resolves after completion of therapy.</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>Reversibly binds to hemoglobin with approximately 200–300 times the affinity of oxygen, resulting in decreased arterial oxygen content. Binds to cytochrome A, inhibiting oxidative phosphorylation.</td>
<td>Decontamination, hyperbaric oxygen, supportive care</td>
<td>Lactate elevation in pure carbon monoxide poisoning is typically mild, but has been shown to correlate with the severity of toxicity. High lactate levels should raise suspicion for cyanide toxicity.</td>
</tr>
<tr>
<td>Cyanide</td>
<td>Impairment of oxidative phosphorylation by inhibiting complex IV in the electron transport train</td>
<td>Decontamination. Antidotes include hydroxycobalamin and sodium thiosulfate with sodium nitrate.</td>
<td>Lactate levels >10 mmol/L are highly concerning for concomitant cyanide poisoning. Animal models have shown that cyanide levels and lactate levels are largely directly correlated.</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Increased NADH to NAD$^+$ ratio</td>
<td>Supportive care</td>
<td>Often increased by a secondary cause, such as sepsis or thiamine deficiency</td>
</tr>
<tr>
<td>Metformin</td>
<td>Inhibits gluconeogenesis, thereby decreasing NAD$^+$ levels. Newer evidence suggests metformin may poison mitochondrial transport chain.</td>
<td>Cessation of metformin; may require dialysis. Supportive care.</td>
<td></td>
</tr>
<tr>
<td>Nucleoside reverse-</td>
<td>Suspected from poor clearance because of liver injury; animal models have shown impaired mitochondrial function.</td>
<td>Supportive care. Cessation of offending agent.</td>
<td>Examples include didanosine, stavudine, and lamivudine.</td>
</tr>
<tr>
<td>Nucleoside reverse-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propofol</td>
<td>Exact mechanism is unclear. Several animal studies have suggested a mitochondrial process and include uncoupling of oxidative phosphorylation, oxidation of cytochromes, and inactivation of complex II/III/coenzyme Q.</td>
<td>Removal of propofol, dialysis, supportive care</td>
<td>Characterized by bradycardia, lactic acidosis, hyperkalemia, cardiovascular compromise, hepatic steatosis, rhabdomyolysis, renal injury, and lipemia. Rare except in cases of prolonged high doses of propofol infusion.</td>
</tr>
<tr>
<td>Ricin</td>
<td>Protein inhibitor and causes direct cellular damage, with resultant hepatotoxicity causing poor clearance, seizures</td>
<td>Supportive care</td>
<td>Toxic component of castor bean</td>
</tr>
<tr>
<td>Sodium azide</td>
<td>When combined with acid, it forms hydrazoic acid, which is highly toxic and causes direct inhibition of oxidative phosphorylation. Seizures.</td>
<td>Supportive care</td>
<td>A white powder used as a reagent in car air bags and laboratory preservatives</td>
</tr>
<tr>
<td>Sodium fluoroacetate</td>
<td>Inhibits the Krebs cycle, thus impairing aerobic metabolism. Seizures.</td>
<td>Supportive care</td>
<td>Highly toxic and currently licensed for use only against coyotes in the United States</td>
</tr>
</tbody>
</table>
typically mild, but has been shown to correlate with the severity of toxicity. Cyanide toxicity is most commonly observed with concomitant carbon monoxide poisoning after smoke inhalation injuries. Cyanide impairs oxidative phosphorylation by inhibiting complex IV in the electron transport train. Animal models have shown that cyanide levels and lactate levels are closely correlated. Lactate levels greater than 10 mmol/L are highly concerning for concomitant cyanide poisoning.

Ethanol. Acute ethanol intoxication causes an elevated lactate level primarily through an increased nicotinamide adenine dinucleotide (reduced) to nicotinamide adenine dinucleotide (oxidized) ratio, which favors the creation of lactate. Underlying comorbidities, such as liver impairment, renal disease, or thiamine deficiency, can also lead to lactate elevation.

Metformin. Metformin increases peripheral glucose uptake, thereby inhibiting gluconeogenesis and decreasing the availability of nicotinamide adenine dinucleotide (oxidized), which favors the creation of lactate. Underlying comorbidities, such as liver impairment, renal disease, or thiamine deficiency, can also lead to lactate elevation.

PROGNOSTIC VALUE AND LACTATE CLEARANCE

Elevated lactate levels and an inability to clear lactate are associated with a worse prognosis in many conditions, particularly in sepsis, trauma, hemorrhage, shock, and cardiac arrest. In a prospective cohort study of ED patients with infection, mortality rates increased with increasing lactate levels, with an initial lactate level greater than or equal to 4 mmol/L associated with a 28% inhospital mortality rate. In a separate study of patients with severe sepsis, this relationship was found to be independent of shock state. Unsurprisingly, increasing lactate concentrations in septic shock are also associated with increasing inhospital mortality, even without signs of overt shock. However, despite the emphasis on specific lactate-level cutoffs found in current definitions and Centers for Medicare and Medicaid Services recommendations, mortality and poor prognosis are associated with even mildly elevated lactate values. Thus, lactate may be best thought of as a continuous rather than dichotomous variable in regard to prognostication and risk stratification.

A decrease in lactate concentrations during resuscitation is associated with improved mortality.
Although there is no clear target percentage decrease or time frame to decrease lactate level, achieving a “normal” lactate level quickly appears to be a reasonable goal; there is no consensus at this point.117,118 Although earlier studies evaluated protocolled lactate measurements in the care of septic patients and showed noninferiority to targeting central venous oxygen saturation levels, a similar benefit in mortality was associated with simply measuring more than one lactate level in the ED.116,119 Some authors have suggested that measuring lactate itself has mortality benefits, but it is more likely that early measurement of lactate is a marker of timely and appropriate care.117 More recently, a large randomized controlled trial showed that a resuscitation strategy targeting peripheral perfusion compared with lactate normalization did not reduce all-cause 28-day mortality.120

HOW TO USE LACTATE IN THE ED

The diagnostic utility of lactate in the ED is diverse: it functions as a marker of resuscitation, identifies patients with occult hypoperfusion, and provides prognostic information. Figure 2 provides a framework to guide appropriate interpretation and use of lactate level. Assuming an appropriately collected and analyzed lactate sample, the first decision point is to determine whether there is concern for shock or hypoperfusion. Any patient with hyperlactatemia and evidence of circulatory shock and general hypoperfusion clearly benefits from resuscitation to restore adequate tissue perfusion. Patients with evidence of regional hypoperfusion (eg, limb or mesenteric ischemia) require emergency intervention to restore perfusion to the affected region, and an elevated lactate level may help guide providers to an accurate and timely diagnosis. In patients who lack overt shock or hypoperfusion, an elevated lactate level should be interpreted in the context of the patient’s medical history, medication list, or any exposures. As we described earlier, hyperlactatemia can also occur from overproduction, impaired clearance, or a combination of both in the absence of tissue malperfusion. Common medications administered in the ED (eg, albuterol) and brief episodes of extreme exertion can result in hyperlactatemia that typically clears quickly without any intervention. Septic patients may have an elevated lactate level from accelerated glycolysis caused by adrenergic stress and may benefit from resuscitation, particularly if there is legitimate concern for occult shock. Patients with renal failure and cirrhosis will have higher lactate levels than counterparts without these conditions. Oncology patients, particularly those with hematologic malignancy, often have

![Figure 2](image-url)
elevated lactate levels from tumor turnover, rather than infection or hypoperfusion. Any test showing an elevated lactate level should be repeated. Lactate clearance is associated with improved outcomes and successful resuscitation, and risk stratifies patients with cardiac arrest, shock, or hypoperfusion. A failure to clear lactate should cause providers to pause and then reevaluate the elevated lactate level to determine whether additional resuscitation or therapies are needed. In certain instances, such as in patients beginning to receive epinephrine, an increase in lactate level is associated with increased survival. Patients at risk for thiamine deficiency may require the administration of thiamine to help clear lactate. In patients who are anticipated to rapidly clear lactate without any intervention, a failure to do so should prompt a reanalysis of the current presentation to ensure no other processes are present.

Lactate levels may also provide false reassurance because not all patients with hypoperfusion will generate elevated lactate levels. For instance, certain patients with superior mesenteric artery occlusion will have normal lactate levels. Likewise, not all patients with vasopressor-dependent hypotension will have hyperlactatemia, yet they have a high mortality rate.59,60

CONCLUSION

Lactate measurement is an important tool for clinicians in the ED. Significant advances have occurred in our understanding of the physiology and interpretation of lactate level, and it is now clear that lactate participates in many different physiologic processes. An oversimplified interpretation may mislead providers, but the savvy provider may recognize that lactate level may be the result of overproduction, impaired elimination, or both, which may guide him or her toward appropriate interventions. With a more nuanced understanding of lactate level interpretation, this important diagnostic and prognostic tool becomes even more beneficial.

Author contributions: GW and CT conceived the idea. All authors contributed to drafting the article and critical revisions. GW takes responsibility for the paper as a whole.

REFERENCES

All authors attest to meeting the four ICMJE.org authorship criteria: (1) Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND (2) Drafting the work or revising it critically for important intellectual content; AND (3) Final approval of the version to be published; AND (4) Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Funding and support: By Annals policy, all authors are required to disclose any and all commercial, financial, and other relationships in any way related to the subject of this article as per ICMJE conflict of interest guidelines (see www.icmje.org). Dr. Wardi has received a speaker’s fee from Thermo Fisher for work unrelated to this topic. He is on the editorial board of PEER and received grant support from the National Foundation of Emergency Medicine.

Publication dates: Received for publication May 11, 2019. Revisions received June 18, 2019, and June 26, 2019. Accepted for publication June 26, 2019.

Wardi et al

Demystifying Lactate in the Emergency Department

Demystifying Lactate in the Emergency Department

