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AbsTrACT
In this two-part series on sources of bias in studies of 
diagnostic test performance, we outline common errors 
and optimal conditions during three study phases: 
patient selection, interpretation of the index test and 
disease verification by a gold standard. Here in part 1, 
biases associated with suboptimal participant selection 
are discussed through the lens of partial verification 
bias and spectrum bias, both of which increase the 
proportion of participants who are the ’sickest of the 
sick’ or the ’wellest of the well.’ Especially through 
retrospective methodology, partial verification introduces 
bias by including patients who are test positive by a 
gold standard, since patients with a positive index 
test are more likely to go on to further gold standard 
testing. Spectrum bias is frequently introduced through 
case–control design, dropping of indeterminate results or 
convenience sampling. After reading part 1, the informed 
clinician should be better able to judge the quality of a 
diagnostic test study, its inherent limitations and whether 
its results could be generalisable to their practice. Part 
2 will describe how interpretation of the index test and 
disease verification by a gold standard can contribute to 
diagnostic test bias.

InTroduCTIon
You are working on shift in a busy ED and a 
38-year-old woman with sudden-onset, tearing 
chest pain radiating to her back arrives via private 
vehicle. She has a father who died in his 40s of 
myocardial infarction, but otherwise has no cardiac 
risk factors and is not on any hormonal therapy. 
Apart from hypertension, she has an unremarkable 
physical exam, and a non-specific repolarisation 
abnormality in the V2-5 leads of her ECG. Her first 
troponin is negative and she is currently in no pain.

The description of her pain is concerning for a 
thoracic aortic dissection (TAD), however you do 
not want to expose the patient to unnecessary radi-
ation, and you are wondering about alternatives 
to CT for excluding TAD, including quantitative 
D-dimer. You recall one of your colleagues recently 
asking, ‘Is D-dimer for dissection ready for use in 
clinical practice?’

The ImporTAnCe of reCognIsIng bIAs
Prior to deciding whether to use the D-dimer test, 
you may want to review relevant studies that quan-
tify the test’s characteristics. To arrive at test char-
acteristics, a study on diagnostic tests compares an 
index test (a diagnostic test whose performance 
is being evaluated) with the gold standard (the 
test which verifies the presence or absence of true 

disease). However, introduction of bias in a study 
can lead to overestimates or underestimates of true 
test characteristics and ultimately clinical errors on 
application.1 Returning to our example of D-dimer 
tests, a biased study that underestimates rate of false 
negative D-dimer results could lead to a missed 
diagnosis of TAD. Similarly, a biased study that 
underestimates the rate of false positive D-dimer 
results could lead clinicians to pursue testing that 
may expose patients to unnecessary radiation.

Although numerous sources of bias have been 
identified in prior reviews, this series focuses only 
on those that have been empirically shown to affect 
test characteristics. Specifically, this article primarily 
addresses the impact of patient selection on diag-
nostic test characteristics (table 1), whereas a second 
article in the series will address bias resulting from 
errors in misapplication of analyses of the index or 
verification tests.2

IdeAl dIAgnosTIC TesT ACCurACy sTudy 
meThods
Studies of diagnostic tests in ideal circumstances are 
designed to minimise bias by first including consec-
utive patients (or a random selection of patients) 
at risk for the condition of interest and reporting 
on how participants were recruited (eg, based on 
presenting symptoms, results from previous tests, 
or whether they received the index test) to yield 
an appropriate spectrum of patients at risk for the 
target condition that are generalisable to clinical 
practices. Ideal studies then apply the index test 
and gold standard to all participants, and finally 
compare the results in a blinded fashion.2 3

To highlight ways in which non-ideal testing may 
lead to bias, a method for reporting studies of diag-
nostic tests has been outlined in the Standards for 
Reporting Diagnostic Accuracy (STARD) checklist, 
a 30-item best practice checklist to report.2 The 
STARD guidelines encourage clarity of reporting in 
each section of the study, and allow for easy iden-
tification of studies that are at low and high risk of 
bias.

However, investigators are not always able to 
design and conduct studies of diagnostic tests that 
satisfy all of the methodological standards due to 
real-world limitations, such as budget limitations, 
rare diseases, or the inability to apply an index 
test or gold standard test in a consecutive sample 
(Figure 2).4 While most studies of diagnostic tests 
are cross sectional, when the disease outcome is 
rare, a cross-sectional study may not be feasible, 
and investigators may choose to use a case–control 
study design resulting in spectrum bias (see the 
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Table 1 Types of biases introduced through diagnostic testing 

Type of bias recognising bias effect on accuracy

partial verification workup or 
referral bias

only patients tested with gold standard are included; 
patients with positive index test are more likely to get 
gold standard.

falsely increases sensitivity by lowering rate 
of false negatives

part 1: 
suboptimal 
patient 
selection

spectrum bias through case–control 
design

Inclusion of ‘sickest of the sick’ or ‘wellest of the well’ falsely increases sensitivity and specificity

spectrum bias through dropping 
indeterminate subjects

Ask ‘did they describe their method for handling 
indeterminates?’

falsely increases sensitivity if excluded 
indeterminates have mild disease. 
falsely increases specificity if excluded 
indeterminates are not diseased.

spectrum bias through convenience 
sampling

look for screening modality in methods section. falsely elevates sensitivity and specificity 
when sampling excludes difficult, 
indeterminate or ambiguous patients.

Part 2: Diagnostic 
and verification 
test

Interpretation Indeterminate When indeterminate results are considered dichotomously as 
positive or negative.

It can overestimate or underestimate the accuracy 
of the test depending on how indeterminates are 
included.

Review Occurs when the person interpreting the diagnostic test has 
access to the gold standard test.

Usually falsely increases the sensitivity and 
specificity of the index test.

Verification Incorporation Occurs when the criteria for a gold standard include the 
results of the diagnostic test

Falsely increases the sensitivity and specificity of 
the index test.

Double gold standard 
(differential verification)

Occurs when gold standard test is invasive or expensive, and 
is only performed when index test result is positive.

Falsely increases the sensitivity and specificity of 
the index test.

Bold text denotes the biases discussed in this manuscript, ‘Recognising Bias in Studies of Diagnostic Tests Part 1: Suboptimal Patient Selection’ 1. Greyed out text denotes the 
biases discussed in 'Recognising Bias in Studies of Diagnostic Tests Part 2: Interpreting and Verifying the Index Test'. 

figure 1 2×2 Table and test characteristic formulas. FN: number of 
subjects with disease and negative index test result. FP: number of 
subjects without disease and positive index test result. TN: number of 
subjects without disease and negative index test result. TP: number 
of subjects with disease and at positive index test result. Negative 
likelihood ratio=1−Sn/Sp. Positive likelihood ratio=Sn/1−Sp.

figure 2 Recognising biases of studies of diagnostic tests. The 
different stages of a study of diagnostic test are prone to certain types 
of biases.

Spectrum bias section). Thus, it may be impossible to conduct a 
particular study in a manner that is completely free of bias.

defInIng sensITIvITy, speCIfICITy, lIkelIhood rATIos 
And predICTIve vAlues
Before discussing how bias influences test characteristics, it is 
important to define sensitivity, specificity and predictive values. 
Sensitivity (the proportion of true positives among those with 
the disease) and specificity (the proportion of true negatives 
among those without the disease) are standard measures to 
report in diagnostic studies. Whereas sensitivity and specificity 
measure the value of a diagnostic test, it is more clinically useful 
to know how well a particular test predicts the risk of disease 
by using likelihood ratios that allow for application of sensi-
tivity and specificity to a particular patient scenario (figure 1). A 

positive likelihood ratio can be defined as the probability that a 
person with the disease tested positive (true positive) divided by 
the probability that a person without the disease tested positive 
(false positive), and a negative likelihood ratio is the probability 
of a person who has the disease testing negative (false negative) 
divided by the probability of a person who does not have the 
disease (true negative) testing negative. However, for likelihood 
ratios to be useful, pretest probabilities need to be known or 
estimated. If known, the pretest probability can be multiplied by 
either the positive or negative likelihood ratio to determine the 
post-test probability of disease.5–7

Notably, sensitivity and specificity are not dependent on 
the prevalence of disease within most studies. However, these 
measures are susceptible to bias arising from suboptimal patient 
selection, as described in this article. In contrast to sensitivity, 
specificity and likelihood ratios, positive predictive value 
(PPV) and negative predictive value (NPV) are dependent on 
the population prevalence or pretest probability.6 Therefore, 
when applying tests from a published study to clinical practice, 
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Table 2 2×2 Table with changing predictive values dependent on 
prevalence

disease+ disease−

Higher prevalence (5%) with 99% sensitive and 95% specific rapid HIV test 

Test+ 495 475 

Test− 5 9025 

PPV: 51% 

Lower prevalence (1%) with 99% sensitive and 95% specific rapid HIV test 

Test+ 99 495 

Test− 1 9405 

PPV: 16.7% 

PPV, positive predictive value.

differences between study populations should be considered. 
PPV represents the proportion of diseased participants with a 
positive test result. NPV represents the proportion of non-dis-
eased among participants with a negative test result (figure 1, 
2×2 table).

An example of the dependence of PPV on prevalence is rapid 
HIV testing. The US Preventive Services Task Force has recom-
mended that routine HIV screening take place in sites with an 
HIV prevalence greater than 0.1%, and to avoid screening in 
lower prevalence settings, as rapid testing is associated with a 
lower PPV.8 For example, if at a theoretical county hospital, the 
pretest probability (prevalence) of HIV disease is higher than 
at a quaternary referral hospital in the same city, then the PPV 
would be higher at the county hospital. In that case, HIV testing 
would be more useful in the county hospital because a posi-
tive test would be more likely to mean that a patient has true 
HIV+ disease. See table 2 as an example of changing PPVs based 
on prevalence.

meChAnIsm for InTroduCIng bIAs: subopTImAl 
pATIenT seleCTIon
In this article we describe how partial verification bias and spec-
trum bias result in a non-representative study population, thus 
hindering generalisability of the index test characteristics to new 
populations.

partial verification bias
Partial verification bias (also called workup bias or referral bias) 
can be introduced when investigators select participants based 
on whether or not they have positive or negative gold stan-
dard test.1 This type of bias is surprisingly common because of 
the counterintuitive nature of partial verification—there is an 
erroneous assumption by investigators that enrolling patients 
with definitive verification of disease will clarify the condition 
being studied and the test of interest. This becomes problematic 
because patients are more likely to receive a gold standard test 
in real life if the index test is positive, thus artificially increasing 
true positives, and increasing sensitivity (see figure 1).1

For example, let us say that an investigator wants to study 
the test characteristics of a rapid triage test (facial droop) for 
detecting stroke among patients presenting with word finding 
difficulties. In ideal circumstances, studies of diagnostic accu-
racy should apply index testing and gold standard testing 
independently. Here, facial droop is the index test, and the 
gold standard is an MRI. Partial verification bias is introduced 
if the investigators start with all patients in the last year with 
MRI-confirmed cerebrovascular accidents (CVA) and describe 
the test characteristics of facial droop at predicting CVAs among 

patients with word finding difficulties, since a higher proportion 
of patients with unilateral facial droop are more likely to get a 
diffusion-weighted MRI (the gold standard verification test) of 
their brain than patients without unilateral facial droop. If some 
of these facial droop negative patients had strokes, but are not 
included in the study, then the resulting partial verification bias 
leads to fewer false negatives, increasing the sensitivity of facial 
droop as a screening test (see figure 1).

Partial verification bias could be avoided in this group of 
patients by either performing MRI on random sample of people 
with suspected stroke who test negative for the facial droop 
test, or by defining a group of patients as suspected stroke, and 
performing the gold standard MRI on all patients who receive 
the index facial droop test, regardless of the presence or absence 
of facial droop. Since MRI is expensive and at times difficult 
to obtain, this example highlights real-world limitations often 
imposed on studies of new diagnostic tests.

spectrum bias
In clinical practice, patients may present with symptoms that 
range from minimal to typical or severe and suggestive of a 
diagnosis. For example, a patient with signs of a unilateral 
swollen right leg, a palpable cord and recent history of a knee 
replacement clearly evokes the diagnosis of deep vein throm-
bosis. A more subtle presentation, however, might be calf pain 
with minimal swelling and tenderness. Clinicians see a broad 
continuum of disease and health in their practice, and inves-
tigators should strive to include participants who mirror this 
spectrum of disease in studies of diagnostic tests. Spectrum bias 
occurs if the spectrum of disease deviates significantly from clin-
ical practice or excludes ambiguous results and may occur via (1) 
a case–control design, (2) exclusion of indeterminate patients, or 
(3) convenience sampling.1

Spectrum bias due to case–control design
In a case–control study, the group known to have the outcome 
(cases) and the group known to be free of the outcome (controls) 
are assembled, and an index test is applied. This is a more effi-
cient design compared with a cross-sectional study, in which all 
of those who are at risk for the outcome are enrolled consecu-
tively. In rare diseases, cross-sectional studies may be infeasible.

However, by selecting a case–control design, an investigator 
may introduce bias by failing to include a diverse group of 
patients that represent the full spectrum of disease. Consider 
this hypothetical study in which researchers wish to ascertain 
whether right lower quadrant tenderness to percussion is useful 
in the diagnosis of appendicitis in children. The investigators 
decide to conduct a retrospective case–control study at a paedi-
atric ED to determine the sensitivity and specificity of tender-
ness to percussion as the index test. They select their cases from 
electronic health record operative reports: the cases are those 
children with appendicitis on pathology. For controls, they select 
age and gender-matched children who present to the paediatric 
ED with abdominal pain who are discharged without a diagnosis 
of appendicitis. They find that the sensitivity and specificity of 
tenderness to percussion are 90% and 98%, respectively.

Case–control design may result in the largest magnitude of 
any biases that will be discussed.4 By including the ‘sickest of 
the sick,’ they will falsely elevate sensitivity.1 5 9 Conversely, 
by including the ‘fittest of the fit,’ specificity estimates will be 
elevated by over-representing healthy true negatives.1 5 9 In this 
example, the investigators could have done a better job matching 
the controls to the participants who were admitted and had a 
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positive appendectomy. For example, they should have included 
those with a negative laparotomy, or those admitted with other 
diagnoses. By selecting age-matched patients discharged home, 
the controls were likely ‘the fittest of the fit.’

Spectrum bias due to dropping indeterminate subjects
Ignoring participants with indeterminate test results may also 
result in spectrum bias.10 Imagine a hypothetical study of point-
of-care ultrasound for detection of flash pulmonary oedema due 
to acute decompensated heart failure (ADHF) using the presence 
of B-line artefacts on a clinician-performed ultrasound. Investi-
gators have used the presence of three or more B-lines in two 
or more rib spaces bilaterally to define a positive index test for 
diffuse interstitial oedema,11 but the number of B-lines exists as a 
continuum and more or fewer B-lines may be present depending 
on disease severity. There may be borderline cases; perhaps there 
are only two B-lines per rib space on one side, but many on 
the contralateral side, all with poor image quality due to body 
habitus or a high patient acuity situation.

If an investigator drops indeterminate or technically difficult 
cases from the analysis, the study will be at risk of spectrum bias 
by excluding patients who are ADHF positive with mild disease 
who would more likely be classified as falsely negative due to 
fewer B-lines, and ADHF-negative patients with a mimicking 
disease (such as influenza causing B-lines12) who would be classi-
fied as falsely positive.1 Referencing table 2, dropping of indeter-
minate results boosts sensitivity and specificity by decreasing the 
denominator of each equation (see figure 1, 2×2 table).

Spectrum bias from convenience sampling
Using the same scenario of B-line ultrasonography for the diag-
nosis of ADHF, suppose participants are enrolled via a non-con-
secutive convenience sample. There may be systematic errors 
in patient selection that bias the results of the test, making the 
test appear more favourable.1 For example, investigators might 
avoid enrolling patients on whom the index test is difficult 
to perform, or would likely result in an indeterminate result. 
Similar to the above examples for spectrum bias due to dropping 
indeterminates, convenience sampling would result in falsely 
increased sensitivity or specificity, depending on which patients 
are excluded and their disease status.

Additional considerations contributing to spectrum bias from 
convenience samples include differential daytime and night-
time resources (consider if the night-time ultrasound team is less 
experienced, resulting in a technically limited ultrasound exam 
or a greater proportion of indeterminate results) or differential 
daytime or night-time patients (eg, if patients with flash pulmo-
nary oedema present more severely ill at night,13 resulting in 
increased sensitivity).

summAry
When evaluating studies of diagnostic performance, it is 
important to carefully consider the study methods, and in 
particular, how participants were selected. For example, in our 
original example of the patient with a suspected acute aortic 
syndrome, if the study of a serum D-dimer assay in relation to 

confirmatory CT testing uses appropriate selection methods and 
includes patients similar to your patient population, then the 
study is likely generalisable to your clinical context.

However, if bias in the evaluation of the D-dimer test was 
introduced due to real-world limitations or pragmatic decisions 
to overcome difficulties in patient enrolment due to the rarity of 
the acute aortic syndrome presentations, either of the following 
forms of bias through suboptimal patient selection may occur: 
(1) partial verification (referral) bias: starting with the gold stan-
dard test positive patients under the assumption that test positive 
patients might lead to ‘pure results,’ and (2) spectrum bias: the 
study cohort is not representative of the full spectrum of patients 
in generalisable clinical practice. Both partial verification bias 
and spectrum bias may lead to over-representation of study 
patients with more severe disease and health controls, leading 
falsely elevated sensitivity and specificity estimates.
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