From Alchemy to Fluid, Electrolyte, and Acid–Base Disorders

Julie R. Ingelfinger, M.D.

The article by Berend et al. in this issue of the Journal is the first in a series of review articles that consider approaches to the understanding and management of fluid, electrolyte, and acid–base disorders. These disorders are among the most common conditions that we encounter as clinicians.

The topics discussed are long-standing concerns. The history of salt and its medicinal uses goes back for millennia, and compounds that we currently call acids and bases were identified in ancient times. During the Middle Ages, acids were known by alchemists, who were seeking to change base metals into gold. However, current knowledge about fluid compartments and the handling of electrolytes is based on work that began about 400 years ago with Santorio Santorius, who may be considered to be among the first investigators in quantitative experimental medicine. Yet, although the foundations that permitted progress occurred earlier, little was known about the actual management of disorders of water and electrolyte balance until the 19th century. For example, Joseph Black recognized carbon dioxide and Antoine Lavoisier, oxygen, in the 18th century. Sodium as an element was discovered by Sir Humphrey Davy only in the first decade of the 19th century. Davy also isolated potassium, calcium, and chloride, but his research was not clinical.

The modern understanding of the role of fluids and electrolytes in physiological homeostasis was triggered by the cholera pandemic that began in 1829. The needs of people with that disease soon led to the earliest attempts at using intravenous electrolyte-replacement fluids, some of which were successful. The experience with cholera, as well as a growing body of knowledge about chemistry and body composition, led to more studies.

In the ensuing two centuries, much has been learned. Once the chemistry was known, efforts to understand the physiology thrived. Early experiments with osmoregulation were performed at the Zoological Station of Naples and elsewhere. These investigators learned more about how the kidney and the lungs participated in maintaining homeostasis. In the mid-20th century, Pitts and others discovered many of the basic principles of acid–base metabolism, and the studies by Gamble, Darrow et al., and others led to an understanding of the role of individual anions and cations in maintaining electrolyte balance, as well as the need to correct abnormalities in fluids and electrolytes. Advances continue in many centers worldwide.

Today, we routinely expect to obtain measurements to determine acid–base and electrolyte status, and these measurements can be performed in minutes in regions of the world where advanced technology is available. And yet, in much of the world, far less information is available. Indeed, death due to fluid and electrolyte imbalance — as occurs in patients with cholera and probably Ebola virus infection — is still all too common in many areas.

This series in the Journal cannot, by the nature of the subject, be even close to complete. But we hope that the topics covered will provide a useful compendium of approaches to the questions that arise when fluid, electrolyte, and acid–base disturbances occur.

In preparation for the first two articles in the series, both of which focus on acid–base disorders (the first on the physiological approach and the second on the strong ion, or Stewart, ap-
proach), we have posted a case at NEJM.org. As
the series on fluid and electrolyte disorders goes
forward, various cases will be posted 2 weeks be-
fore publication of an upcoming review article.
These cases will be followed by questions about
the diagnosis or management of the condition
to be considered in the article. We encourage
you to read the case and tell us how you would
manage the patient’s treatment. We will post
the results of this online poll to coordinate with
publication of the review article.

Disclosure forms provided by the author are available with the
full text of this article at NEJM.org.

1. Berend K, de Vries APJ, Gans ROB. Physiological approach to
1434-45.
2. Cirillo M, Capasso G, Di Leo VA, De Santo NG. A history of
4. Thomas SJ, Edwards PP, Kuznetsov VL. Sir Humphry Davy:
boundless chemist, physicist, poet and man of action. Chem-
5. O’Shaughnessy WB. Experiments on the blood in cholera.
Lancet 1831-32;1:490.
6. Latta T. Relative to the treatment of cholera by the copious
injection of aqueous and saline fluids into the veins. Lancet 1832;
2:274-7.
7. Chieffi G. Osmoregulation at the Zoological Station of Naples
8. Pitts RF, Lotspeich WD. Bicarbonate and the renal regulation
9. Gamble JL. Chemical anatomy, physiology and pathology of
extracellular fluid. 5th ed. Cambridge, MA: Harvard University
10. Darrow DC, Pratt EL, Flett J, Gamble AH, Wiese HF. Distur-
bances of water and electrolytes in infantile diarrhea. Pediatrics

DOI: 10.1056/NEJMe1411472
Copyright © 2014 Massachusetts Medical Society.

Ebola — An Ongoing Crisis

Lindsey R. Baden, M.D., Rupa Kanapathipillai, M.B., B.S., M.P.H., D.T.M.&H.,
Edward W. Campion, M.D., Stephen Morrisey, Ph.D., Eric J. Rubin, M.D., Ph.D.,
and Jeffrey M. Drazen, M.D.

In March 2014, an outbreak of a febrile illness
associated with a high case fatality rate was
identified in the Guéckédou region of Guinea–
Conakry, a remote part of West Africa. An inter-
national field investigation was initiated. On
April 16, the Journal published a preliminary re-
port identifying the outbreak as due to Ebola
virus. The initial sequence data showed that the
outbreak strain was *Zaire ebolavirusr*, but a strain
distinct from those identified in prior outbreaks,
such as those in the Democratic Republic of Congo
(DRC) and Gabon. In Guinea there appeared to be
ongoing human-to-human transmission. Over
the next 4 to 8 weeks, the outbreak seemed to be
resolving, as over 20 previous outbreaks have,
with a substantial decline in new cases. We and
many others thought it would soon be over.

We were wrong. Cases started to appear over
the summer, and the number increased exponen-
tially as this viral infection spread more widely in Guinea–Conakry and in Liberia and
Sierra Leone. Cases associated with travel have
been identified in Senegal and Nigeria, and
there is evidence of ongoing transmission in Ni-
geria. Recently, Ebola transmission has been
identified in the DRC, although molecular data
suggest that this event is unrelated to the ongo-
ing West African outbreak.

These molecular data provide the information we need to define
important aspects of ongoing transmission dy-
namics and to guide control strategies. Current-
ly, there is no effective treatment, but human
vaccine trials have been initiated.

As of September 18, 2014, there were 5335
identified cases of Ebola virus disease, with more
than 2622 associated deaths, which is more than
in all previous Ebola outbreaks combined. These
numbers are nonetheless likely to be underesti-
mates, given the limitations of case identifica-
tion, and the fraction of deaths probably under-
estimates the case fatality rate, because the
interval between case identification and death
has been just over 2 weeks. Although clinical
data remain sparse, it seems likely that effective
basic supportive care may make the difference
between life and death for an infected patient.
Unfortunately, health care workers have been
disproportionately affected owing to the tremen-
dous demands of patient care and the difficulty
of implementing the infection-control measures
required to prevent transmission. The Ebola
outbreak is having serious adverse effects on